Understanding the Origin of Stars

Stars light up the night sky on a daily basis and are for both kids and adults tiny twinkling specimens that are full of mystery. After all how much do you little ones really know about where stars come from and how they illuminate the skies? Scientific study has revealed stars to be collections of atoms floating in space that form carbon, oxygen, and hydrogen. Under the right conditions stars and even small planets form as a result.

Photo by: epSos.de

To dive deeper into the study of stars and their formation, NASA has just recently sent a flight into a star nursery to properly observe the inner workings of star formations. This will give researchers and scientists the opportunity to see the step by step process of how a star comes to be. The payload sent into space is known as the Colorado High-resolution Echelle Stellar Spectrograph, or CHESS.

This all new technology is allowing us to record details such as the timeline breakdown for the forming of the clouds in space. Sending the CHESS into space also allows NASA to test for sending future satellites into space.

Impressive Strength: The Peacock Mantis Shrimp

The ocean dwelling Peacock Mantis Shrimp is tougher than its name implies. Do not let this pretty little guy fool you—this creature’s front appendages can strike with an underwater acceleration that equates to the same velocity of a speeding bullet from 22-calibur rifle! So why are researchers willing to go face to face with such a menacing little crustacean? Researchers have designed a structure for composite materials that can resist impacts tougher than airplane standard materials. All of this is inspired by the stomatopod’s impressive strength that seems out of this world!

Photo by Craig D

Photo by Craig D

With raptorial appendages that fold under its body, similar to that of a Praying Mantis, the Peacock Mantis Shrimp can deliver a hard hitting blow. They can wield their fist-like clubs to strike prey with great force at speeds up to 50 miles per hour in milliseconds—we can blink and miss this shrimp’s punch! Their appendages move so fast that the water that surrounds these limbs start to boil and create cavitation bubbles. When these bubbles collapse, they produce an underwater shock wave that is strong enough to affect their prey even if the Mantis Shrimp misses its target.

What is most impressive about this species is that is can punch up to 50,000 times with out damaging its clubs before molting. This unbelievable strength of such a tiny animal is what makes them one of the more interesting species to scientists in the animal kingdom. Studying the Mantis Shrimp’s fist-like clubs, will allow researchers to identify the key components to its structure and applying that knowledge to creating improvements with everyday objects, including advanced body armor for combat troops.

Calling All Blasters: The Crew Tournament is On!

Are you ready for an out-of-this-world adventure? Max and the Math Blaster team are officially kicking off the start of our month long Crew Tournament! If you haven’t already done so be sure to join one of our growing numbers of Crews or start yours on group of stellar math blasting Cadets.

This Math Academy competition might sound easy, but only the best and brightest Blasters will be able to take home our top prize – a NEW and never-before-seen HyperCycle! Trophies take into account how well you do in any of the Math Academy games. So play each game as much as possible to bring big TROPHIES to your Crew. Remember this bracket style tournament faces you off with one other Crew for each consecutive round of weekly play. And, all you need to do is play games in the Math Academy to start earning as many awesome accolades as possible!

Math Academy

Crew Trophies will be averaged out by the number of Blaster cadets in your Crew, so this is a challenge that is all about working with your in-world friends! For more details and the official schedule, review last week’s official announcement post and check back regularly as we update you on the current tournament standings here on the blog and social media sites like Facebook, Google+, and Twitter!

The Earth and Moon

In our night sky, there is one celestial body that is easy spot – the moon. Like a large, natural satellite, the moon orbits around our Earth and is brighter than any regular nighttime cosmic object. So what is the difference between our Earth and the moon? Here are some characteristics that distinguish these differences along with some similarities that you can share with your Cadets at home.

Photo by Blatant World

Photo by Blatant World

The first major difference is our atmosphere here on Earth. It holds in the essential gasses we need to breath and helps to distribute thermal energy so that our planet does not get too hot or too cold. It is an important part of what makes Earth livable. The moon has a very thin atmosphere, which causes wild temperatures. On the moon during the day it can exceed 200°F and can drop to as low as -280°F at night! That’s too hot and too cold for any human, plant or animal from Earth to live comfortably.

Gazing at the moon in the night sky, it is hard to tell how big it really is. It is actually only a little over a quarter the size of our Earth, which is smaller than all of the planets in our solar system, with the exception of the dwarf planet, Pluto. But, compared to its counterpart during the day, why does the moon seem about the same size as the sun? Not only is the moon 400 times smaller, but also it is also 400 times closer to the Earth than the sun is! This explains why they look similar in size in our sky.

Believe it or not, the moon wasn’t always a fixture that orbited the Earth. So how did it get there? Scientists believe that the moon was formed from a huge collision that blasted a chunk off of the Earth. The debris was caught in orbit and eventually formed the moon.
It is true that the moon brightens up our night sky, but that is not the only thing it helps Earth with. Acting along with the sun, the moon’s gravitational forces are responsible for our ocean’s high and low tides.

The Earth and the moon are very different in size, atmosphere, temperature, and even terrain. The Earth is a unique planet that supports life and the moon helps the Earth support that life. So although very different, the moon serves a beneficial purpose as it orbits the Earth.